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1. Path integral for Green functions in QED.

1.1. Lagrangian QED, gauge invariance.

The Electrodynamics is the theory of electrons and positrons interacting

with the electromagnetic field. The electrons and positrons are spin-12

elementary exitations of Dirac field whose Lagrangian density is

LD = ψ̄(ıγµ∂µ −m)ψ (1)

The elementary exitations of electromagnetic field are the photons, which

are spin-1 particles. The Lagrangian density of electromagnetic field is

LEM = −1

4
Fµν(x)F µν(x)

Fµν(x) = ∂µAν − ∂νAµ, F
µν = ηµσηνλFσλ (2)

The electromagnetic interaction term is given by

Lint = −eψ̄γµAµψ = JµAµ (3)
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The total Lagrangian can be written in the form

Ltot ≡ LEM + LD + Lint = −1

4
Fµν(x)F µν(x) + ψ̄(ıγµDµ −m)ψ (4)

where

Dµ ≡ ∂µ + ıeAµ

(5)

is so called covariant derivative. The covariant derivative is naturaly arises

since the total Lagrangian is invariant under the gauge transformations

ψ(x)→ exp (ıα(x))ψ(x), Aµ → Aµ −
1

e
∂µα(x) (6)

1.2. Green functions of QED in ξ-gauge.

For the φ4 theory we obtained the following path representation of

Green’s functions:

< Ω|T (φ̂(~xN , tN)...φ̂(~x1, t1)|Ω >=

lim
T→∞

∫
[Dφ]φ(~x1, t1)...φ(~xN , tN) exp [ ı~

∫ T
−T dtd

3xL(φ, ∂φ)]∫
[Dφ] exp [ ı~

∫ T
−T dtd

3xL(φ, ∂φ)]
(7)

Generalizing the corresponding analysis for the case of QED we can

write

< Ω|T (ψ̂aN (xN)...ψ̂a1(x1)
ˆ̄ψbM (yM)... ˆ̄ψb1(y1)ÂµL(uL)...Âµ1

(u1)|Ω >=

lim
T→∞∫

[Dψ][Dψ̄][DAν]ψ
aN (xN)...ψ̄b1(y1)AµL(uL)...Aµ1

(u1) exp [ ı~
∫ T
−T dtd

3xLtot(ψ,A)]∫
[Dψ][Dψ̄] exp [ ı~

∫ T
−T dtd

3xLtot(ψ,A)]

(8)

As we have seen the path integral above is badly determined due to the

total action does not change under the gauge transformations and one needs
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to fix gauge to take into account gauge orbits integration. We considered

so called ξ-gauge for the Green’s functions of the EM field. It is clear that

ξ-gauge can also be used for the Green’s functions above if one makes in

the expression (8) the replacement

Ltot → Ltot −
1

2ξ
(∂µAµ)2.

(9)

Of course the expression (8) is not gauge invariant, so we should use

Green’s functions of gauge invariant operators.

1.3. Interaction representation and Wick theorem.

Modulo the total derivatives the Lagrangian density of EM field in ξ-

gauge can be written as a free field Lagrangian:

LEM = −1

4
Fµν(x)F µν(x) ≈

1

2
Aµ(∂ν∂νA

µ − (1− 1

ξ
)Aµ∂

µ∂νA
ν)

(10)

Thus we have a theory of two free fields interacting to each other due to

Lint = −eψ̄γµAµψ = JµAµ

(11)

with the coupling constant e.

The Green’s functions (8) could be calculated by perturbation theory

if one could express the Heisenberg operators of fields ψ(x), ψ̄(x), Aµ(x)

and vacuum state |Ω > in terms of the Heisenberg operators of free field of

Dirac’s fermions, free field of the vector potential and vacuum state |0 >
of these non interacting fields. In other words, one needs to develope the

interaction picture for QED.
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This can be done in exactly the same way as in the case of φ4 model.

As a result we obtain

< Ω|T (ψ̂aN (xN)...ψ̂a1(x1)
ˆ̄ψbM (yM)... ˆ̄ψb1(y1)ÂµL(uL)...Âµ1

(u1)|Ω >=

lim
T→∞

< 0|T (ψaN (xN)...ψ̄b1(y1)AµL(uL)...Aµ1
(u1)) exp [−ı

∫ T
−T dtHI(ψ,A)])|0 >

< 0|T exp [−ı
∫ T
−T dtHI(ψ,A)]|0 >

(12)

where

HI(ψ,A) = e

∫
d3xψ̄γµAµψ (13)

The perturbation series appears when we expand the exponentials and get

a series of Green’s functions of free fields weighted by a powers of e.

The question is how to calculate these Green’s functions?

For the KG theory and Dirac field theory we know the answer. It is

given by Wick theorem. The same theorem is certainly correct for the case

at hand:

T (ψa1I (x1)...ψ
aN
I (xN)...ψ̄b1I (y1)...ψ̄

bM
I (yM)...AµL

I (uL)) =

: ψa1I (x1)...ψ
aN
I (xN)...ψ̄b1I (y1)...ψ̄

bM
I (yM)...AµL

I (uL) : +

sum of : ψa1I (x1)...ψ
aN
I (xN)...ψ̄b1I (y1)...ψ̄

bM
I (yM)...AµL

I (uL) :

with all possible contractions inside.

(14)

The contractions are given by Feynman’s propagators:

SabF (x− y) =< 0|T (ψa(x)ψ̄b(y))|0 >=

∫
d4p

(2π)4
ı(pµγ

µ +m)ab

p2 −m2 + ıε
exp (−ıp(x− y)),

Dµν
F (x− y) =< 0|T (Aµ(x)Aν(y))|0 >=∫

d4k

(2π)4
−ı

k2 + ıε
(gµν − (1− 1

ξ
)
kµkν

k2
) exp (−ık(x− y))

(15)
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1.4. An example and Feynman rules.

< Ω|T (ψa(x)ψ̄b(y))|Ω >=
1

Z
< 0|T (ψaI (x)ψ̄bI(y))|0 > +

−ıe
Z

< 0|T (ψaI (x)ψ̄bI(y)

∫
d4uψ̄I(u)γµAIµ(u)ψI(u))|0 > +

(−ıe)2

2!Z
< 0|T (ψaI (x)ψ̄bI(y)

∫
d4uψ̄I(u)γµAIµ(u)ψI(u)

∫
d4vψ̄I(v)γνAIν(v)ψI(v))|0 >

+...

(16)

where

Z =< 0|T exp [−ıe
∫
d4(u)ψ̄I(u)γµAIµ)(u)ψI(u)]|0 > (17)

Let us consider the nominator at (−ıe)0:

< 0|T (ψa(x)ψ̄b(y))|0 >=

< 0| : ψa(x)ψ̄b(y) : |0 > + < 0|ψa(x)ψ̄
b
(y)|0 >= SabF (x− y).

(18)

This term describes free propagation of Dirac field without interaction:

SabF (x− y) =
x y
a b

(19)

The nominator at first order is equal zero because there is no possibility

to contract the field Aµ(u).

At the second order we have two nontrivial contributions

< 0|ψa(x)ψ̄b(y)ψ̄(u)γµAµ(u)ψ(u)ψ̄(v)γνAν(v)ψ(v)|0 > +(u↔ v) =

SacF (x− u)(γµ)cdS
dk
F (u− v)(γν)knS

nb
F (v − y)DFµν(u− v) + (u↔ v).

(20)
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The total coefficient for this contribution is (−ıe)2
2! . These terms describe

the process of propagation of the Dirac field ψa(x) from point x to the

point u where it emits a photon. Then the fermion propagets to the point

v where it obsorbs the photon and propagates to the point y:

x u v y
a b

+ (u↔ v). (21)

We come thereby to the Feynman rules in QED:

1. Vertex:

u
a

= −ıe
∫
d4uγa (22)

2. Dirac’s propagator

SF (x− y) =
x y

(23)

3. Photon’s propagator

DF
ab(x− y) =

x y
a b

(24)

The Feynman rules in momenta space:

1. Vertex:

u
a

= −ıeγa (25)
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2. Dirac’s propagator

ı(pµγµ +m)

p2 −m2 + ıε
= (26)

3. Photon’s propagator

−ıηab
k2 + ıε

= a b (27)

where the photon propagator is written in Lorentz gauge ξ = 1.

Certainly, the denomonator (17) contains vacuum diagrams

which are cancelled with the vacuum diagrams coming from nom-

inator. This phenomenon has already been discussed in φ4.

2. S-matrix and LSZ theorem for QED.

In order to calculate S-matrix elements in QED one needs to detrmine in

and out asymptotic states of photons, electrons and positrons and develope

the Feynman rules for the calculation of amplitudes.

2.1. Asymptotic states and LSZ for electrons and positrons.

In the free theory one can create one particle states of electron and

positron

|p, s,+ >= a+s (~p)|0 >,

|p, s,− >=
1√
2E~p

b+s (~p)|0 >

(28)

where ± indicates the value of electric charge and

a+s (~p) =
1√
2E~p

∫
d3x exp (ı(E~px

0 + pix
i))ψ̄(x)γ0us(~p)

b+s (~p) =
1√
2E~p

∫
d3x exp (ı(E~px

0 + pix
i))v̄s(~p)γ

0ψ(x)

(29)

7



where we have used

ψ(x) =

∫
d3p

(2π)3
1

2
√
E~p

∑
s

(as~pu
s(~p) exp (−ıpx) + bs†~p v

s(~p) exp (ıpx))

ψ̄(x) =

∫
d3p

(2π)3
1

2
√
E~p

∑
s

((as~p)
†ūs(~p) exp (ıpx) + (bs~p)v

s(~p) exp (−ıpx))

(30)

and the relations

u†s(~p)ur(~p) = 2E~pδsr, v
†
s(~p)vr(~p) = 2E~pδsr,

u†s(~p)vr(−~p) = v†s( ~−p)ur(~p) = 0.

(31)

Let us consider an operator that in the free theory creates a particle

with definite spin and charge, localized in momentum space near p1, and

localized in position space near the origin:

a+1,s1 =

∫
d3pf1(~p)a

+
s1

(~p), f1(~p) ≈ exp (−(~p− ~p1)
2ε

).

(32)

If we time evolve the state created by this timeindependent operator, then

the wave packet will propagate. The particle will thus be localized far from

the origin as t→ ±∞. If we consider instead an initial state of the form

|(~p1, s1)(~p2, s2 >in= a+1,s1a
+
2,s2
|0 >

(33)

then we have two particles that are widely separated in the far past.

As we stated in Lect. 13, when considering the φ4 theory, this picture

is valid for the interacting theory (due to Lorentz invariance, locality

and claster property of Green’s functions).
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Although the complication is that a+1,s1 is time dependent be-

cause in QED a+1,s1 is no longer conserved, in the limit t → ∞ the

state

|(~p1, s1)(~p2, s2 >in= lim
t→−∞

a+1,s1(t)a
+
2,s2

(t)|Ω > (34)

be asymptotic scattering 2-particles in-state (similarly to the φ4

theory).

Analogously the asymtotic scattering 2-particles out-states can be build:

|(~p1, s1)(~p2, s2 >out= lim
t→∞

a+1,s1(t)a
+
2,s2

(t)|Ω > (35)

We want to find S-matrix element

out < (~k1, r1)(~k2, r2)|(~p1, s1)(~p2, s2) >in . (36)

In order to calculate this it is helpfull to consider the difference of operators

a+1,s1(−∞)− a+1,s1(+∞) = −
∫ +∞

−∞
dt∂ta

+
1,s1

(t) =

−
∫
d3p

f1(~p)√
2E~p

∫
d4x∂t exp (ıpx)ψ̄(x)γ0us(~p) =

−
∫
d3p

f1(~p)√
2E~p

∫
d4x(∂0ψ̄(x)γ0 − ıψ̄γ0p0)us1(~p) exp (ıpx) =

−
∫
d3p

f1(~p)√
2E~p

∫
d4x(∂0ψ̄(x)γ0 − ıψ̄γipi − ım)us1(~p) exp (ıpx) =

ı

∫
d3p

f1(~p)√
2E~p

∫
d4x(ı∂µψ̄γ

µ +mψ̄)us1(~p) exp (ıpx) (37)

where in the fourth line we used (γµpµ + m)us(~p) = 0 and in the last line

we integrated by parts.

Notice that in free Dirac’s fermions theory the right hand side of this

expression is zero since ψ obeys Dirac equation. In QED this is not the

case so the scattering is nontrivial.
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The hermitian conjugate to (37) is given by

a1,s1(∞)− a1,s1(−∞) =

ı

∫
d3p

f1(~p)√
2E~p

∫
d4x exp (−ıpx)ūs1(~p)(−ıγµ∂µ +m)ψ(x) (38)

Similarly we find

b+1,s1(−∞)− b+1,s1(+∞) =

−ı
∫
d3p

f1(~p)√
2E~p

∫
d4x exp (ıpx)v̄s1(~p)(−ıγµ∂µ +m)ψ(x)

b1,s1(∞)− b1,s1(−∞) =

−ı
∫
d3p

f1(~p)√
2E~p

∫
d4x(ı∂µψ̄γ

µ +mψ̄)vs1(~p) exp (−ıpx) (39)

Now we can write the matrix element (36) as

out < (~k1, r1)(~k2, r2|(~p1, s1)(~p2, s2 >in=

< Ω|a2,r2(∞)a1,r1(∞)a+1,s1(−∞)a+2,s2(−∞)|Ω >=

< Ω|T (a2,r2(∞)a1,r1(∞)a+1,s1(−∞)a+2,s2(−∞))|Ω >

(40)

and take the limit ε→ 0 so that the wave packets becomes the delta func-

tions. We use (37), (38) to obtain Lehmann-Symanzik-Zimmermann

reduction formula for fermions in QED

out < (~k1, r1)(~k2, r2)|(~p1, s1)(~p2, s2) >in=

ı4√
16E~k1E~k2E~p1E~p2

∫
d4x1d

4x2d
4y1d

4y2 exp (−ık2y2) exp (−ık1y1)

< Ω|T (ūr2(
~k2)(−ıγµ∂µ +m)ψ(y2)ūr1(

~k1)(−ıγν∂ν +m)ψ(y1)

(ı∂λψ̄(x2)γ
λ +mψ̄(x2))us2(~p2)(ı∂τ ψ̄(x1)γ

τ +mψ̄(x1))us1(~p1))|Ω >

exp (ıp2x2) exp (ıp1x1)

(41)
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In general the LSZ reduction formula is given by the rules

a+s (~p)in →
ı√
2E~p

∫
d4x(ı∂µψ̄(x)γµ +mψ̄)us(~p) exp (ıpx)

as(~p)out →
ı√
2E~p

∫
d4x exp (−ıpx)ūs(~p)(−ı∂µγµ +m)ψ(x)

b+s (~p)in → −
ı√
2E~p

∫
d4x exp (ıpx)v̄s(~p)(−ı∂µγµ +m)ψ(x)

bs(~p)out → −
ı√
2E~p

∫
d4x(ı∂µψ̄(x)γµ +mψ̄)vs(~p) exp (−ıpx) (42)

It is convenient to rewrite the expression (41) in the momenta represen-

tation:

out < (~k1, r1)(~k2, r2)|(~p1, s1)(~p2, s2) >in=

ı4√
16E~k1E~k2E~p1E~p2

< Ω|T (ūr2(−~k2)(−ıγµk
µ
2 +m)ψ(k2)ūr1(−~k1)(−ıγνkν1 +m)ψ(k1)

ψ̄(−p2)(−ıγλpλ2 +m)us2(~p2)ψ̄(−p1)(imγτpτ1 +m)us1(~p1))|Ω >

(43)

Similar to φ4 model the factors like (−ıγλpλ1+m) vanish on-shell. On the

other hand the Green’s function above has a pole when (−ıγλpλ1 +m) = 0.

As a result we can write

Sc((~p1, s1)(~p2, s2)|(~k1, r1)(~k2, r2)) =

Z2
ψ < Ω|T (ūr2(−~k2)ψ(k2)ūr1(−~k1)ψ(k1)ψ̄(−p2)us2(~p2)ψ̄(−p1)us1(~p1))|Ω >amp

(44)

2.2. Asymptotic states and LSZ for photons.

It is convenient ot choose Lorentz gauge ξ = 1 to write out the asymtotic

states for the photons. In this gauge each component of gauge potential
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obeys KG equation. Therefore we can decompose the quantum EM field

in the basis of classical solutions

Aµ(x) =

∫
d3p

(2π)3
1√
2E~p

3∑
i=0

(ai(~p)ε
i
µ(~p) exp (−ıpx) + a+i (~p)ε∗iµ (~p) exp (ıpx))

(45)

where i = 0, ..., 3 number the basis polarization vectors.

The corresponding LSZ reduction formula for photons in QED is

given by

a+i (~k)in → −
ı√
2E~k

ε∗µi (~k)

∫
d4x exp (ıkx)∂ν∂

νAµ(x)

ai(~k)out → −
ı√
2E~k

εµi (~k)

∫
d4x exp (−ıkx)∂ν∂

νAµ(x) (46)

These rules allows to generalize (44) for the case asymptotic

states including the photons. The only feature of the asymptotic states

of the photons is that the polarization vectors take the form

εi = (0, ~e), ~p · ~e = 0

(47)

in order to exclude time like photons.

2.3. Feynman rules for scattering processes.

1.For each incoming electron, draw a solid line with an arrow pointed

towards the vertex, and label it with the electron’s four-momentum, p:

us(p) =
p

(48)

2.For each outgoing electron, draw a solid line with an arrow pointed

away from the vertex, and label it with the electron’s momentum, p:

ūs(p) =
−p

(49)
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3.For each incoming positron draw a solid line with an arrow pointed

away from the vertex, and label it with minus the positron’s momentum,

−p:

v̄s(p) =
p

(50)

4.For each outgoing positron, draw a solid line with an arrow pointed

towards the vertex and label it with minus positron’s momentum:

vs(p) =
−p

(51)

5.For each incoming photon draw a wavy line with an arrow pointed

towards the vertex, and label it with the photon’s momentum, k:

εµ(k) = k (52)

6.For each outgoing photon draw a wavy line with an arrow pointed

away from the vertex, and label it with the photon’s momentum, k:

ε∗µ(k) = −k (53)

7.The only allowed allowed vertex joins two solid lines, one with an

arrow pointing towards it and one with an arrow pointing away from it

and one wavy line (whose arrow can point in either direction). Using

this vertex join up all the external lines. In this way, draw all possible

topologically inequivalent diagrams.

8. Assign each internal line its own momentum. Provide a conservation

low for the momenta at each vertex.

9. The value of the diagram consists of the factors: εµ(k) for each

incoming photon; ε∗µ(k) for each outgoing photon; us(p) for each incoming

electron; ūs(p) for each outgoing electron; v̄s(p) for each incoming positron;

vs(p) for each outgoing positron; −ıeγµ for each vertex;
−ıηµν
k2+ıε for each

internal photon;
ı(pµγµ+m)
p2−m2+ıε for each internal fermion.
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